RES. 2

TED (15)	5()3:	5
----------	----	-----	---

(REVISION — 2015)

	VED. T			
Reg	No			
Sign	ture			

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2017

RENEWABLE ENERGY SOURCES

[Time: 3 hours

(Maximum marks: 100)

PART -- A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. List any two factors affecting bio digestion.
 - 2. Enumerate geothermal resources.
 - 3. Write the principle of conversion of solar radiation into heat.
 - 4. List the classification of WEC system.
 - 5. Enumerate the power converter used in wind energy applications. $(5 \times 2 = 10)$

PART -- B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Describe briefly any three forms of non-conventional energy sources available in nature.
 - 2. Explain the classification of biomass gasifiers.
 - 3. Describe any one method of solar radiation measurements.
 - 4. Describe Solar Cooker.
 - 5. Explain the horizontal axis wind machine.
 - 6. Explain the variable speed variable frequency scheme for wind power generation.
 - 7. Explain the stand alone solar energy system.

 $(5 \times 6 = 30)$

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

UNIT — I

III	(a)	Distinguish between dome type and drum type biogas plants.	8
	(b)	Describe the open cycle ocean thermal energy conversion.	7
		OR	
IV	(a)	List the classification of bio-gas plants.	7
	(b)	Explain with neat sketch, the schematic layout of tidal power house.	8
		Unit — II	
V	(a)	Describe solar distillation.	8
,	(b)	Explain the flat plate type solar collector.	7
		OR	
VI	(a)	Describe the solar water heating system.	7
	(b)	List the direct solar energy applications.	8
		Unit — III	
VII	(a)	Describe the basic components of wind energy conversion system.	9
	(b)	Explain Isovents and Isodynes.	6
		OR	
VIII	(a)	Explain wind energy estimation.	8
	(b)	Explain the environmental impacts of wind power generation.	7
		Unit — IV	
IX	(a)	Explain with block diagram of solar PV system.	8
	(b)	Describe the grid connected wind energy system.	7
		OR	
X	(a)	Describe step up or boost convertor.	7
	(b)	Describe the grid connected PV system	8