TED (10)-	1002	Reg. No
(REVISION-	–2010)	Signature
	FIRST SEMESTER DIPLOMA EXAMINATION	IN ENGINEERING/
	TECHNOLOGY—OCTOBER, 2	013
	TECHNICAL MATHEMATICS—I	

(Common to all branches except DCP and CABM)

[Time: 3 hours

(Maximum marks: 100)

Marks

PART-A

(Maximum marks: 10)

I 1. Which of the following matrices is symmetric:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} , \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} , \begin{bmatrix} 2 & -2 \\ 3 & 4 \end{bmatrix}$$

- 2. Find the value of r, if $20C_r = 20C_{r+2}$.
- 3. State the identity for tan (A-B).
- 4. State projection formula.
- 5. Define slope of a straight line.

 $(5 \times 2 = 10)$

PART-B

(Maximum marks: 30)

(Answer any five questions. Each question carries 6 marks.)

- II 1. Solve the equations: 3x + y z = 3, -x + y + z = 1, x + y + z = 3 by finding the inverse of the coefficient matrix.
 - 2. If $A = \begin{bmatrix} 5 & 3 \\ 2 & 2 \end{bmatrix}$, and $B = \begin{bmatrix} 7 & 5 \\ 4 & 3 \end{bmatrix}$, show that $(AB)^{-1} = B^{-1} A^{-1}$.
 - 3. Prove that $nC_r + nC_{r-1} = (n+1)C_r$.
 - 4. Prove that $\frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x$
 - 5. State and prove sine rule.
 - 6. Using Napier's formula, find angles A and B in \triangle ABC, if a = 5cm, b = 8cm, C = 30°.
 - 7. Find the equation to the line passing through (4, 5) which is
 - (i) parallel (ii) perpendicular to the line 2x + 3y = 4. $(5 \times 6 = 30)$

5

5

PART-C

(Maximum marks: 30)

(Answer one full question from each unit. Each question carries 15 marks.)

III 1. If
$$A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 2 & 3 \\ -3 & 0 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 1 & 1 \\ 2 & -2 & 3 \end{bmatrix}$, verify that $A(B-C) = AB - AC$.

2. If
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 \\ 4 & 6 \end{bmatrix}$, show that $(AB)^T = B^T A^T$.

3. Show that the eliminant of
$$1x + my + n = 0$$
, $mx + ny + 1 = 0$ and $nx + 1y + m = 0$ is $1^3 + m^3 + n^3 = 31mn$.

IV 1. If
$$A = \begin{bmatrix} 1 & 2 & 6 \\ 7 & 4 & 10 \\ 1 & 3 & 5 \end{bmatrix}$$
, evaluate A^2 -8A-20I.

2. Express the matrix
$$A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 2 & 3 \\ 3 & 1 & 0 \end{bmatrix}$$
 as the sum of a symmetric and a skew 5

3. Solve using determinant:
$$x + 2y - z = -1$$
, $3x - y - 2z = 5$, $x - y - 3z = 0$.

UNIT - II

- V 1. Expand $(x + 1/x)^7$ using binomial theorem.
 - 2. If tanx = 7/24 and x is in the third quadrant, find the value of $3 \sin x 4\cos x$.
 - 3. Draw the graph of $y = \cos x$.

OR

VI 1. Find the term independent of x in the expansion of
$$(x + 3/x)^{10}$$
.

2. Write the signs of (i)
$$\cot (7\pi/4)$$
 (ii) $\tan 500$ (iii) $\csc 280$. (2+2+1)

3. Prove that
$$\frac{\tan 45 - \tan 30}{1 + \tan 45 \cdot \tan 30} = 2 - \sqrt{3}.$$

Unit - III

2. If
$$\sin 18 = \frac{\sqrt{5} - 1}{4}$$
, find $\cos 36$ and $\sin 54$.

3. Prove that
$$\cos \frac{\pi}{8} + \cos \frac{3\pi}{8} + \cos \frac{5\pi}{8} + \cos \frac{7\pi}{8} = 0.$$

5.50

VIII 1. If
$$\cos A = -12/13$$
, $\cot B = 24/7$ and A is in quadrant II and B is in Quadrant I, find $\cos (A-B)$.

2. Prove that
$$\cot A - \cot 2A = \csc 2A$$
.

3. Show that
$$\left(\frac{a+b}{c}\right) \sin^2 \frac{c}{2} = \cos \frac{A+B}{2}$$
.

			Marks
		UNIT - IV	
IX	1.	Derive the equation of a straight line of the form $x/a + y/b = 1$.	5
	2.	Find the slope and intercepts of the line $5x - 3y + 15 = 0$.	5
	3.	Find the angles of the triangle having vertices $(3, 2)$, $(5, -4)$ and $(1, -2)$.	5
		OR	
X	1.	Find the values of p if the lines $(2p + 1)$ $x-(5-p)y = 8$ and $(5p - 1)$ $x - (p+1)y = 3$ are parallel.	5
	2.	Find the foot of the perpendicular from $(-2,1)$ on the line $x - 2y = 6$.	. 5
	3.	A straight line cuts off on the axes of coordinates positive intercepts whose sum is 5. Given that the line passes through (-4, 9), find its equation	5