TED	(10)-1002

Reg.	No.	
Signa	iture	A CONTRACTOR OF THE PROPERTY O

(REVISION—2010)

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLOGY—OCTOBER, 2012

TECHNICAL MATHEMATICS - I

(Common to all branches except DCP and CABM)

[Time: 3 hours

(Maximum marks: 100)

Marks

PART—A

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Which of the following matrices is singular:

$$\begin{bmatrix} 2 & -2 \\ 3 & 3 \end{bmatrix}, \begin{bmatrix} 5 & -1 \\ 0 & 5 \end{bmatrix}, \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix}$$

- 2. Find the value of 20C₁₈.
- 3. State the identity for $\sin (A B)$.
- 4. State Napier's formula.
- 5. Find the third side of a triangle, given b = 2 cm, c = 3 cm and $A = 60^{\circ}$. (5x2=10)

PART-B

- II Answer any five questions. Each question carries 6 marks.
 - 1. Solve the equations: 2x + y + z = 1, x 2y z = 3/2, 3y 5z = 9 by finding the inverse of the coefficient matrix.
 - 2. If $A = \begin{bmatrix} 4 & 1 \\ 6 & 5 \end{bmatrix}$, find A^{-1} and show that $AA^{-1} = A^{-1} A = 1$.
 - 3. Find the middle terms in the expansion of $(2x + 3/x)^9$.
 - 4. Prove that $\frac{\sin 11A. \sin A + \sin 7A. \sin 3A}{\cos 11A. \sin A + \cos 7A. \sin 3A} = \tan 8A.$
 - 5. State and prove projection formula.
 - 6. Solve the $\triangle ABC$, given b = 50 cm, c = 80 cm, $A = 132^{\circ}$.
 - 7. Derive the equation of a straight line of the form $\frac{y-y1}{y1-y2} = \frac{x-x1}{x1-x2}$

(5x6=30)

5

5

5

5

5

PART-C

(Answer one full question from each unit. Each question carries 15 marks.)

III 1. If
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 0 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & -1 & -1 \\ -2 & 2 & 3 \end{bmatrix}$, verify that $A(B+C) = AB + AC$.

- 2. If $A = \begin{bmatrix} 1 & 0 & 5 \\ -2 & 1 & 6 \\ 3 & 2 & 7 \end{bmatrix}$, show that AA^{T} and $A^{T}A$ are symmetric.
- 3. Solve the following system using cramer's rule: x + y + z = 3, 2x + 3y + z = 6, x y z = -3.

OR

IV 1. If I is the unit matrix of order 3 and
$$A = \begin{bmatrix} 1 & 2 & 6 \\ 7 & 4 & 10 \\ 1 & 3 & 5 \end{bmatrix}$$
, find A^2-3A+I .

- 2. Show that every square matrix can be expressed as the sum of two matrices of which one is symmetric and the other is skew symmetric.
- 3. Find k if the system is consistent: x + y + 1 = 0, x + 2y + 1 = 0, 2x + 3y + k = 0.

- V 1. Expand $(x^2 3/x)^5$ using binomial theorem.
 - 2. If $\cos x = -4/5$ and x is in the second quadrant, find the remaining Trigonometric functions of x.
 - 3. Draw the graph of $y = \sin 3x$.

OR

- VI 1. Find the coefficient of x^{11} in the expansion of $(x^4 1/x^3)^{15}$.
 - 2. Write the signs of the following:
 - (i) $\cot (1080 + x)$, 0 < x < 90
 - (ii) $\cot (-97)$
 - (iii) Sec (360-x), 0 < x < 90. (2+2+1=5)
 - 3. Prove that $\tan^2 30 + \tan^2 45 + \tan^2 60 = 13/3$.

Unit - III

- VII 1. Express $\sqrt{3} \cos x + \sin x$ in the form R sin $(x + \alpha)$, where α is acute.
 - 2. Prove the identity for sin3A.
 - 3. Show that 2 (bc.cosA + ca.cosB + ab.cosC) = $a^2 + b^2 + c^2$.

		M.	larks
VIII	1.	Show that $\tan 15 + \cot 15 = 4$.	5
	2.	If $\tan A = .38$, find $\tan 2A$.	5
	3.	Prove that $\cos 55 + \cos 65 + \cos 175 = 0$.	5
		$\mathbf{U}_{NIT} - \mathbf{IV}$	
IX	1.	Find the equation of a line which passes through the point (-4, 5) and whose intercepts are equal in magnitude but opposite in sign.	5
	2.	Find the slope and intercepts of the line $3x + 4y - 15 = 0$.	5
	3.	Find the angle between the lines $ax + by + c = 0$ and $dx + ey + f = 0$.	5
		OR	
X	1.	Find the condition for two lines are (i) parallel (ii) perpendicular.	5
	2.	The straight line through (4, 3) makes intercepts 4a and 3a on the X and Y axis respectively, find a.	5
	3.	Show that the point of intersection of the lines $5x - 12y = 2$ and $3x - 8y + 2 = 0$ lies on $2x - 3y = 8$.	5