IM/c.4

TED (15) - 5031

(REVISION - 2015)

Reg. No. Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2018

INDUCTION MACHINES

[Time: 3 hours

(Maximum marks : 100)

PART — A

(Maximum marks : 10)

Marks

I Answer all questions in one or two sentences. Each question carries 2 marks.

- 1. What is the principle of a transformer ?
- 2. Write two applications of autotransformer.
- 3. Define the term 'slip'.
- 4. State two methods of starting squirrel cage induction motors.
- 5. Write any two applications of induction motors.

PART - B

(Maximum marks : 30)

II Answer any *five* of the following questions. Each question carries 6 marks.

- 1. Explain the working of a single phase transformer.
- 2. Derive the E M F equation of a transformer.
- 3. State and explain the voltage regulation of a transformer.
- 4. Explain all day efficiency of a transformer.
- 5. Differentiate starting torque and maximum torque of an induction motor.
- 6. Draw the equivalent circuit of an induction motor and explain.
- 7. Explain about the starting method of slip-ring induction motor.

PART - C

(Maximum marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

UNIT — I

- III (a) Explain ideal transformer.
 - (b) The core of a 3-phase, 50 Hz, 11000/550 V Delta/Star, 3 kVA core type transformer is operating with a flux of 0.05 Wb. Find :
 - (i) Number of HV and LV turns per phase
 - (ii) EMF per turn
 - (iii) Full load HV and LV phase currents.

8

7

 $(5 \times 2 = 10)$

 $(5 \times 6 = 30)$

	- 11		
			Marks
IV	(a)	Explain the condition of a transformer on no-load.	7
	(b)	A 30 kVA, 2400/120 V, 50 Hz transformer HV winding has 0.1Ω and a leakage reactance of 0.22Ω . The LV winding 0.035Ω and leakage reactance of 0.012Ω . Find the equivareactance and impedance of the winding referred (i) HV side	a resistance of has a resistance of lent resistance, and (ii) LV side. 8
		Unit — II	
V	(a)	Explain with figure, the working of an autotransformer.	7
	(b)	Derive the equation for saving of copper in autotransformer.	8
		Or	
VI	(a)	Explain the different cooling methods of a transformer.	7
	(b)	What is meant by the efficiency of a transformer ? Explain the maximum efficiency.	e condition for 8
		Unit — III	
VII	(a)	Describe the construction of a 3-phase induction motor.	9
(b		A 3-phase induction motor is wound for 4 poles and is supplied from 50Hz system. Calculate:	
		(i) Synchronous speed (ii) Rotor speed when slip is 4%	6 and
		(iii) Rotor frequency when runs at 600 r p m	6
		Or	
VIII	(a)	Explain the power stages of a 3-phase induction motor.	. 7
	(b)	A 18.65 kW, 4 Pole, 50 Hz, 3-phase induction motor has a friction and windage loss of 2.5% of the output. The full load slip is 4%. Compute the full-load :	
		(i) Rotor copper loss (ii) Shaft torque	
		(iii) Rotor input (iv) Gross electro-magnetic tore	que 8
		Unit — IV	
IX	(a)) Explain the no load and blocked rotor test of a 3-phase ind	luction motor. 7
	(b) Draw and explain the circle diagram of induction motor.	8
		Or	
X	(a	Describe with figure any two methods for starting of squirrel cage induction motor. 12	
	(b	Draw the equivalent circuit of a double squirrel cage induction motor.	