FAC.7

TED (15) - 3033 (REVISION - 2015)

Reg.	No	
Siona	ture	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2019

FUNDAMENTALS OF A C SYSTEMS

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks : 10)

Marks

I Answer *all* questions in one or two sentences. Each question carries 2 marks.

- 1 Define R M S value of an AC quantity.
- 2. Express the impedance of an A C series R-L circuit in regular and rectangular form.
- 3. Draw the 'Power Triangle' of an A C circuit.
- 4. What are the possible phase sequences in a 3-phase supply system.
- 5. List any two equipments used to improve power factor in A C circuits. $(5 \times 2 = 10)$

PART — B

(Maximum marks : 30)

II Answer any five of the following questions. Each question carries 6 marks.

- 1. In an AC circuit, voltmeter and ammeter indicated 230 V and 10 A respectively. What will be the maximum values and average values of the current and voltage ?
- 2. Prove that an Alternating Current in a pure inductive circuit will lag behind the applied voltage by 90°.
- 3. Express the following electrical quantities in trigonometric and rectangular forms : $\overrightarrow{V} = 50 \angle 36.8^{\circ}$ V and $\overrightarrow{I} = 40 \angle -42^{\circ}$
- 4. Show that the Line value of voltage is greater than the phase value of voltage in a 3-phase balanced star connection.
- 5. Compare 3-phase Star and Delta connections.
- 6. Draw a circuit diagram for measuring 3-phase power taken by a load using two watt meters and write the expression for Power.
- 7. Calculate the active and reactive powers taken by a load whose power measured by 2 watt meters read as W1 = 400 W and W2 = -825 W. Also find power factor.

PART — C

(Maximum marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

UNIT — I

		Unit — I	
III	(a)	List the advantages of A C over D C electric supply system.	7
	(b)	How can we represent a sinusoidal A C current using four types of values. OR	8
IV	(a)	Derive an expression for an A C voltage generated.	7
	(b)	Find the resultant current of the branch currents.	
		$i_1 = 4 \sin (\omega t - 45^\circ)$ and $i_2 = 2 \sin (\omega t + 30^\circ)$ using vectors.	8
		Unit — II	
V	(a)	What is meant by Resonance in series AC circuit ? Derive the expression for resonant frequency.	7
	(b)	A 318uF capacitor alone is connected across a 230V, 50 Hz system. Determine.	
		 (i) Capacitive reactance, (ii) RMS value of the current and (iii) the equations for instantaneous voltage and current values. 	8
VI	(a)	OR Derive the expressions for impedance, current, power and power factor in an AC	7
VI	(a)	series R-C circuit.	,
	(b)	Express the following electrical quantities in polar form and draw the phasors.	
		(i) $i = (3+j7)$ (ii) $v = (-2+j5)$ (iii) $v = (-50-j75)$ (iv) $i = (6-j8)$.8
		Unit — III	
VII	(a)	Explain the advantages of 3-phase power system.	6
	(b)	A balanced star connected load of impedance $(6 + j8) \Omega$ per phase is connected to a 3-phase 400 V, 50 Hz supply. Find the current, power factor, active and reactive power and total volt-ampere.	9
		Or	
VIII	(a)	A 3-phase balanced delta load takes a line current of 15 A at 0.8 leading p.f. Supply given is 400 V, 50 Hz. Calculate the power drawn, resistance and capacitance in each leg of the load.	8
	(b)	Draw the lay-out of a star connected lighting load in a 3-floor building of 6 rooms.	7
		Unit — IV	
IX	(a)	Three identical coils, each having a reactance of 20Ω and resistance of 20Ω are connected in (a) star (b) delta across a 440-V, 3-phase line. Calculate for each method of connection, (i) the line current and (ii) the readings on two watt meters	10
		connected to measure the power.	10
	(b)	Or	5
X	(a)	Explain about the nature of wattmeter readings with respect to load power factor in three phase power measurement using two watt meters.	9
~ *	(b)	State some of the disadvantages of having lower power factor.	6