TED (15) – 4032	Reg. No.
(REVISION — 2015)	Signature
	IN ENGINEERING/TECHNOLOGY/ CIAL PRACTICE — APRIL, 2019
DIGITAL ELECTRONIC	S AND MICROPROCESSORS
	[Time: 3 hours
(Maximu	ım marks : 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Draw the symbol of EX-OR gate and write output expression.
 - 2. State Demorgan's theorems.
 - 3. Name the different types of shift registers.
 - 4. Name any two status flags used in 8085 Microprocessor.
 - 5. State any two type of analog to digital converter.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Convert the following Hexadecimal numbers into binary and then to decimal
 - (a) 4BC_H

- (b) F24_H
- 2. Diagrammatically represent the following gates using NAND gate.
 - (a) AND

- (b) OR
- 3. Draw the logic diagram and truth table of an active high clocked RS flip flop.
- 4. Draw the logic diagram and truth table of a serial-in parallel out shift register to store and retrieve a data 1011, using positive edge triggered D-flip flops.
- 5. List the characteristics of ECL logic family.
- 6. Draw a 2-bit synchronous up counter with truth table.
- 7. State any six highlighting features of 8085 Microprocessor.

 $(5 \times 6 = 30)$

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I

		Unit — I	
III	(a)	Convert +14 and +24 into binary equivalent and subtract +14 from + 24 using 2's complement method. Show all conversion steps.	8
	(b)	Draw a two input AND gate using diodes and resistor and explain it.	7
		OR	
IV	(a)	Convert the following decimal numbers to binary and hexadecimal number systems.	
		(i) 25.25 _D (ii) 61.625 _D Show all conversion steps.	8
	(b)	Explain the following characteristics of digital ICs.	
		(i) Propagation delay (ii) Fan-in (iii) Fan out	7
		Unit — II	
V	Des	ign and Draw the logic diagram for a full Adder using k-map.	15
		OR	
VI ·	(a)	Draw the logic diagram and truth table to explain a 1 line to 4 line de-multiplexer.	9
	(b)	Define a decoder. Draw and explain a basic binary decoder to detect 1001 ₂ .	6
		Unit — III	
VII	-	UNIT — III Plain a 4-bit (MOD-16) asynchronous up counter with the help of a logic diagram, ang diagram and a table showing counting sequence.	15
VII	-	plain a 4-bit (MOD-16) asynchronous up counter with the help of a logic diagram,	15
VIII	timi	plain a 4-bit (MOD-16) asynchronous up counter with the help of a logic diagram, and a table showing counting sequence.	15 15
	timi	plain a 4-bit (MOD-16) asynchronous up counter with the help of a logic diagram, and diagram and a table showing counting sequence. OR ceribe binary weighted type digital to analog converter with relevant diagrams.	
	Des Pro	plain a 4-bit (MOD-16) asynchronous up counter with the help of a logic diagram, and diagram and a table showing counting sequence. OR scribe binary weighted type digital to analog converter with relevant diagrams. We the output voltage is proportional to the binary weights of resistors.	
VIII	Des Pro	plain a 4-bit (MOD-16) asynchronous up counter with the help of a logic diagram, and diagram and a table showing counting sequence. OR scribe binary weighted type digital to analog converter with relevant diagrams. We the output voltage is proportional to the binary weights of resistors. UNIT — IV	15
VIII	Des Pro	plain a 4-bit (MOD-16) asynchronous up counter with the help of a logic diagram, and diagram and a table showing counting sequence. OR ceribe binary weighted type digital to analog converter with relevant diagrams. We the output voltage is proportional to the binary weights of resistors. UNIT — IV Draw pin diagram of 8085 microprocessor and mark pin functions.	15
VIII	Des Pro	plain a 4-bit (MOD-16) asynchronous up counter with the help of a logic diagram, and diagram and a table showing counting sequence. OR ceribe binary weighted type digital to analog converter with relevant diagrams. We the output voltage is proportional to the binary weights of resistors. UNIT — IV Draw pin diagram of 8085 microprocessor and mark pin functions. Explain the Flag register with reference to 8085 microprocessor. OR Explain the following control and status signals in 8085 microprocessor.	15 9 6
VIII	Des Pro (a) (b) (a)	plain a 4-bit (MOD-16) asynchronous up counter with the help of a logic diagram, and diagram and a table showing counting sequence. OR scribe binary weighted type digital to analog converter with relevant diagrams. We the output voltage is proportional to the binary weights of resistors. UNIT — IV Draw pin diagram of 8085 microprocessor and mark pin functions. Explain the Flag register with reference to 8085 microprocessor. OR Explain the following control and status signals in 8085 microprocessor. (i) S0, S1 (ii) IO/M (iii) RD and WR	15
VIII	Des Pro	plain a 4-bit (MOD-16) asynchronous up counter with the help of a logic diagram, and diagram and a table showing counting sequence. OR ceribe binary weighted type digital to analog converter with relevant diagrams. We the output voltage is proportional to the binary weights of resistors. UNIT — IV Draw pin diagram of 8085 microprocessor and mark pin functions. Explain the Flag register with reference to 8085 microprocessor. OR Explain the following control and status signals in 8085 microprocessor.	15 9 6