N19	984	00407
TAR		00401

TED (15) - 4032(REVISION — 2015)

Reg. No.	
Sionature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2019

DIGITAL ELECTRONICS & MICROPROCESSORS

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Define radix and radix point.
 - 2. State De Morgan's theorem.
 - 3. What is Karnaugh map?
 - 4. Define modulo _n counter.
 - 5. List the Special Purpose Registers (SPR) used in 8085 microprocessor. $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Realize the logic expression $Y = \overline{B} \overline{C} + \overline{A} \overline{C} + \overline{A} \overline{B}$ using basic gates.
 - 2. List any six different performance parameters and characteristics of logic families.
 - 3. Design and explain a full adder circuit using XOR, AND & OR gates.
 - 4. Justify the JK flip flop as a universal flip flop.
 - 5. Draw and explain the block diagram of SISO shift register.
 - 6. List any six applications of counters.
 - 7. Explain the instruction format of 8085 microprocessor.

 $(5 \times 6 = 30)$

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

		Unit — I		
beauty ((a)	 (i) Convert (4ECE.43F)₁₆ to octal number. (ii) Convert the decimal number 46.2 into binary number. 		
	(b)	Draw the symbols and truth tables of the following logic gates.		
		(i) OR (ii) AND (iii) NOT (iv) NAND (v) NOR (vi) XOR (vii) XNOR	7	
TX 7	()	OR		
IV	(a)	Implement the logic gates for the following expressions. (i) $(A + B) (C + D + E)$ (ii) $(A + B + \overline{C}) (D + \overline{E})$	8	
	(b)	Explain the general classification of logic families.	7	
		Unit — II		
V	(a)	State and prove the basic theorems of Boolean algebra.	8	
	(b)	Construct and explain the logic circuit for 4 to 1 line multiplexer.	7	
		OR		
VI	(a)	Explain the operation of encoders and decoders.	8	
	(b)	Describe the working of master slave JK flip flop.	7	
		Unit — III		
VII	(a)	Compare between combinational circuits and sequential circuit.	8	
	(b)	Draw and explain a 3 bit Up - Down synchronous counter. OR	7	
VIII	(a)	Explain the working of the following ADC's with block diagram.		
		(i) Successive approximation ADC (ii) 3 bit flash ADC	8	
	(b)	Draw and explain the four bit Parallel In - Serial Out shift registers constructed by D - flip-flops and NAND gates for entering data.	7	
		Unit — IV		
IX	(a)	Draw the pin diagram of 8085 and explain the function of each pin.	8	
	(b)	Explain any seven features of 8085 microprocessor.	7	
		Or		
X	(a)	Draw and explain the functional block diagram of 8085 microprocessor.	8	
	(b)	Explain various addressing modes of 8085 microprocessor with justification.	7	