ΓΕD (15) – 4032		Reg. No
(REVISION — 2015)		Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2018

DIGITAL ELECTRONICS AND MICROPROCESSORS

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. List the four types of number system used in digital system.
 - 2. State the De Morgan's theorems.
 - 3. Define the term 'modulus of a counter'.
 - 4. Draw the symbol of clocked R-S flip flop and its truth table.
 - 5. List the registers contained in the special purpose register in a 8085 microprocessor. $(5\times2=10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Explain the steps to convert a decimal number (527.74)₁₀ into binary and hexadecimal number.
 - 2. Draw the logic circuit for the expression $Y = B + \overline{B}C + AB$ using NAND gate.
 - 3. List the applications of flip flops.
 - 4. Explain the different modes of operations in shift register.
 - 5. Differentiate between synchronous and asynchronous counters.
 - 6. Explain the different addressing modes of 8085.
 - 7. Compare the TTL and CMOS gates.

 $(5 \times 6 = 30)$

[P.T.O.

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

	Unit — I	
III	(a) Derive the EX-OR gate from basic gates and draw its symbol and truth table.	6
	(b) Illustrate the procedure to add the following numbers in binary and verify the result (AF1.B3) ₁₆ + (FFF.E) ₁₆ . OR	9
IV .	(a) Explain the steps for adding the decimal numbers (-118) ₁₀ and (-32) ₁₀ using eight bit 2's compliment arithmetic method.	6
	(b) Explain the operations of common logic gates in digital circuits.	9
	Unit — II	
V	(a) Explain the logic diagram of 4×1 multiplexer with an ENABLE input.	6
	(b) Explain the operation of master slave flip flop constructed with J-K flip flop.	9
	O_{R}	
VI	(a) Explain the working of octal-to-binary encoder.	6
	(b) Explain the operation of R-S flip flop and draw the implementation of its active - LOW input and active - HIGH input using NAND gates.	9
	Unit — III	
VII	(a) Explain the operation of four bit UP/DOWN counter.	6
,	(b) Explain the modes of operation of a D/A converter.	9
	OR	
VIII	(a) Explain the operation of a four bit synchronous counter with suitable wave form.	6
	(b) Explain the major performance specifications of an A/D converter.	9
	Unit — IV	
ΙX	(a) Explain the instruction sets of 8051 microprocessor.	6
	(b) With neat sketch explain the functional block diagram of 8085 microprocessor.	9
	OR	
X	(a) Draw the schematic pin diagram of 8085 microprocessor.	6
Λ	(")	9

(b) Explain the features of 8085 microprocessor.