			DC M	/c.
TED (15) -	- 4031	Reg. No.	
(REVISION — 2015)			Signature	
		PLOMA EXAMINATION IN ENGINEERING HANAGEMENT/COMMERCIAL PRACTICE —		′
		DC MACHINES		
			[Time:	3 hours
		(Maximum marks: 100)		
		PART — A		
		(Maximum marks: 10)		
				Marks
I	Δns	swer all questions in one or two sentences. Each question	carries 2 marks	
1			carries 2 marks.	
	 2. 	Define DC Generator. Define armature reaction.		
	3.	Define critical speed.		
	4.	Write the formula for back e.m.f. and their units.		
	5.	List the various methods of testing DC Motors.	(5	$\times 2 = 10$
		DADT		
		PART — B (Maximum marks : 30)		
П	Δno	swer any five of the following questions. Each question car	ries 6 marks	
11	1.	Derive the EMF equation of a DC generator.	iiob o iiidiiib.	
	2.	Classify D C Generators based on their field excitation with	th the aid of diagrams.	
	3.	Describe various methods to improve commutation.		
	4.	Explain the open circuit characteristic of a dc shunt genera	itor.	
	5.	Draw and explain three point starter.		
	6.	List the advantages and disadvantages of PMDC motor.		
	7.	Explain the various losses in a dc machine.	(5	$6 \times 6 = 30$

PART - C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I

(a) Explain the construction of yoke and armature of a DC Generator with sketch. \mathbf{III}

(b) Calculate the e.m.f. generated by a 6 pole lap wound armature with 65 slots and 12 conductors per slot, when driven at 1000 rpm. The flux per pole is 0.02 Webber.

OR

8

7

			Marks
IV	(a)	Compare lap and wave windings.	8
	(b)	A short Shunt generator supplies a current of 100A at a voltage of 220V. If the shunt, series armature resistances are 50ohm, 0.025 ohm and 0.05 ohm respectively.	
		Calculate:	
		(i) Generated e.m.f.	
		(ii) Power delivered. Allow a brush drop of 1 V per brush.	7
		Unit — II	
V	(a)	Explain commutation with a neat sketches.	8
	(b)	Plot the internal and external characteristics of a DC Shunt generator.	7
		OR	
VI	(a)	Define critical field resistance and explain how it can be obtained.	8
	(b)	Explain the necessity and conditions for parallel operation of DC Shunt generators.	7
		Unit — III	
VII	(a)	Briefly explain the working of a DC Motor.	8
	(b)	Draw the diagram for Ward Leonard method of speed control.	7
		OR	
VIII	(a)	Derive the torque equation of a DC Motor.	8
	(b)	A DC motor takes an armature current of 110 A at 480 V. The armature resistance is 0.22 ohm. The machine has 6 poles and the armature is lap connected with 864 conductors. The flux per pole is 0.05 Wb. Calculate the gross torque developed by the motor.	7
		Unit — IV	
IX	(a)	Draw the electrical and mechanical characteristics of a DC Series motor.	8
	(b)	Derive the condition for maximum efficiency of a DC Machine.	7
		Or	
X	(a)	Explain the Swinburnes test on a DC Motor with diagram.	8
	(b)	List the various applications of DC Shunt Motors.	7